मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Evaluate the following integrals using properties of integration: tdttdt∫0sin2xsin-1t dt+∫0cos2xcos-1t dt - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals using properties of integration:

`int_0^(sin^2x) sin^-1 sqrt("t")  "dt" + int_0^(cos^2x) cos^-1 sqrt("t")  "dt"`

बेरीज

उत्तर

I1 = `int_0^(sin^2x) sin^-1 sqrt("t")  "dt"`

Put `si^-1 sqrt("'t") = theta`

`sqrt("t")` = sin θ

t sin2x
θ 0 x

`1/(2sqrt("t")) "dt"` = cos θ dθ

dt = `2sqrt("t") cos theta  "d"theta`

= 2 sin θ cos θ dθ

dt = sin 2θ dθ

I1 = `int_0^x theta  sin2theta  "d"theta`

= `[ (- thetacos2theta)/2 + (sin2theta)/4]_0^x`

= `(-x cos 2x)/2 + (sin2x)/4`  ......(1)

I1 =  `int_0^(cos^2x)  cos^-1 sqrt("t") "dt"`

Put `cos^-1 sqrt("t")` = θ

`sqrt("t"")` = cos θ

`1/(2sqrt("t"))  "dt"` = – sin θ dθ

dt`- 2sqrt("t")  sin theta  "d"theta`

= – 2cos θ sin θ dθ
dt = – sin 2θ dθ

I2 = `int_0^(cos^x) cos^-1  sqrt("t")  "dt"`

= `int_(pi/2)^x - theta sin 2theta  "d"theta`

t cos2x
θ `pi/2` x

= `- [(- theta cos 2theta)/2+ (sin theta)/4]_(pi/2)^x`

= `[(theta cos2theta)/2 - (sin 2theta)/4]_(p/2)^x`

= `(x cos 2x)/2 - (sin 2x)/4 + pi/4`   ........(2)

I = I1 + I2

= `(- x cos 2x)/2 + (sin 2x)/4 + (x cos2x)/2 - (sin 2x)/4 + pi/4`

I = `pi/4`

shaalaa.com
Fundamental Theorems of Integral Calculus and Their Applications
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Applications of Integration - Exercise 9.3 [पृष्ठ ११३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 9 Applications of Integration
Exercise 9.3 | Q 2. (vii) | पृष्ठ ११३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×