हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following: d∫01sin(3tan-1x)tan-1x1+x2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^1 (sin(3tan^-1 x)tan^-1 x)/(1 + x^2)  "d"x`

योग

उत्तर

I = `int_0^1 (sin(3tan^-1 x)tan^-1 x)/(1 + x^2)  "d"x`

Put t = `tan^-1x`

dt = `1/(1 + x^2)  "d"x`

x 0 1
t 0 `pi/4`

I = `int_0^(pi/4) (sin 3"t")"t"  "dt"`

= `int_0^(pi/4) "t"(sin 3"t")  "dt"`

u = t, v = sin3t

u' = 1, v1 = `- (cos3"t")/3`

u'' = 0, v1 = `- (sin 3"t")/9` 

`int "uv"  "d"x` = uv1 – u'v2 + u"v3 

`int_0^(pi/) "t"(sin 3"t")  "dt" = [- "t" (cos3"t")/3 + (sin 3"t")/9]_0^(pi/4)`

= `-^((pi/4)) xx 1/3 xx - 1/sqrt(2) + 1/9 xx 1/sqrt(2)`

= `pi/(12sqrt(2)) + 1/(9sqrt(2)`

= `1/sqrt(2) [pi/12 + 1/9]`

shaalaa.com
Bernoulli’s Formula
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.4 [पृष्ठ ११५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.4 | Q 2 | पृष्ठ ११५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×