Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^1 (sin(3tan^-1 x)tan^-1 x)/(1 + x^2) "d"x`
योग
उत्तर
I = `int_0^1 (sin(3tan^-1 x)tan^-1 x)/(1 + x^2) "d"x`
Put t = `tan^-1x`
dt = `1/(1 + x^2) "d"x`
x | 0 | 1 |
t | 0 | `pi/4` |
I = `int_0^(pi/4) (sin 3"t")"t" "dt"`
= `int_0^(pi/4) "t"(sin 3"t") "dt"`
u = t, v = sin3t
u' = 1, v1 = `- (cos3"t")/3`
u'' = 0, v1 = `- (sin 3"t")/9`
`int "uv" "d"x` = uv1 – u'v2 + u"v3
`int_0^(pi/) "t"(sin 3"t") "dt" = [- "t" (cos3"t")/3 + (sin 3"t")/9]_0^(pi/4)`
= `-^((pi/4)) xx 1/3 xx - 1/sqrt(2) + 1/9 xx 1/sqrt(2)`
= `pi/(12sqrt(2)) + 1/(9sqrt(2)`
= `1/sqrt(2) [pi/12 + 1/9]`
shaalaa.com
Bernoulli’s Formula
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?