Advertisements
Advertisements
Question
Evaluate the following:
`int_0^1 (sin(3tan^-1 x)tan^-1 x)/(1 + x^2) "d"x`
Solution
I = `int_0^1 (sin(3tan^-1 x)tan^-1 x)/(1 + x^2) "d"x`
Put t = `tan^-1x`
dt = `1/(1 + x^2) "d"x`
x | 0 | 1 |
t | 0 | `pi/4` |
I = `int_0^(pi/4) (sin 3"t")"t" "dt"`
= `int_0^(pi/4) "t"(sin 3"t") "dt"`
u = t, v = sin3t
u' = 1, v1 = `- (cos3"t")/3`
u'' = 0, v1 = `- (sin 3"t")/9`
`int "uv" "d"x` = uv1 – u'v2 + u"v3
`int_0^(pi/) "t"(sin 3"t") "dt" = [- "t" (cos3"t")/3 + (sin 3"t")/9]_0^(pi/4)`
= `-^((pi/4)) xx 1/3 xx - 1/sqrt(2) + 1/9 xx 1/sqrt(2)`
= `pi/(12sqrt(2)) + 1/(9sqrt(2)`
= `1/sqrt(2) [pi/12 + 1/9]`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`int_0^1 x^3"e"^(-2x) "d"x`
Evaluate the following:
`int_0^(1/sqrt(2)) ("e"^(sin^-1x) sin^-1 x)/sqrt(1 - x^2) "d"x`
Evaluate the following:
`int_0^(pi/2) x^2 cos 2x "d"x`
Choose the correct alternative:
If `f(x) = int_0^x "t" cos "t" "dt"`, then `("d"f)/("d"x)` =