English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Evaluate the following: d∫0π2x2cos2x dx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int_0^(pi/2) x^2 cos 2x  "d"x`

Sum

Solution

I = `int_0^(pi/2) x^2 cos 2x  "d"x`

u = x2, v = cos2x

u' = 2x, v1 = `(sin 2x)/2`

u'' = 2, v2 = `- (cos 2x)/4`

v3 = `- (sin 2x)/8`

I = `[x^2 (sin 2x)/2 + 2x (cos2x)/4 - 2 (sin 2x)/8]_0^(pi/2)`

= `[0 - pi/4 - 0]`

= `- pi/4`

`int_0^(pi/2) x^2 cos 2x  "d"x = - pi/4`

shaalaa.com
Bernoulli’s Formula
  Is there an error in this question or solution?
Chapter 9: Applications of Integration - Exercise 9.4 [Page 115]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 9 Applications of Integration
Exercise 9.4 | Q 4 | Page 115
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×