हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following: d∫0π2sin2xcos4x dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^(pi/2) sin^2x cos^4 x  "d"x`

योग

उत्तर

`int_0^(pi/2) sin^2x cos^4 x  "d"x = int_0^(pi/2) (1 - cos^2x) cos^4x  "d"x`

= `int_0^(pi/2) (sin^4x - cos^6x)  "d"x`

= `int_0^(pi/2) cos^4x  "d"x - int_0^(pi/2) cos^6x  "d"x`

= `(3/4xx 1/2 xx pi/2) - (5/6 xx 3/4 xx 1/2 xx pi/2)`

= `(3pi)/16 - (5pi)/32`

= `pi/16[3 - 5/2]`

= `pi/16[(6 - 5)/2]`

= `pi/16(1/2)`

= `pi/32`

shaalaa.com
Reduction Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.6 [पृष्ठ १२०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.6 | Q 1. (v) | पृष्ठ १२०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×