Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^(pi/2) sin^2x cos^4 x "d"x`
उत्तर
`int_0^(pi/2) sin^2x cos^4 x "d"x = int_0^(pi/2) (1 - cos^2x) cos^4x "d"x`
= `int_0^(pi/2) (sin^4x - cos^6x) "d"x`
= `int_0^(pi/2) cos^4x "d"x - int_0^(pi/2) cos^6x "d"x`
= `(3/4xx 1/2 xx pi/2) - (5/6 xx 3/4 xx 1/2 xx pi/2)`
= `(3pi)/16 - (5pi)/32`
= `pi/16[3 - 5/2]`
= `pi/16[(6 - 5)/2]`
= `pi/16(1/2)`
= `pi/32`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`int_0^(pi/2) sin^10 x "d"x`
Evaluate the following:
`int_0^(pi/2) cos^7 x "d"x`
Evaluate the following:
`int_0^(pi/4) sin^6 2x "d"x`
Evaluate the following:
`int_0^(pi/6) sin^5 3x "d"x`
Evaluate the following:
`int_0^(2pi) sin^7 x/4 "d"x`
Evaluate the following:
`int_0^(pi/2) sin^3theta cos^5theta "d"theta`
Evaluate the following:
`int_1^0 x^2 (1 - x)^3 "d"x`
Choose the correct alternative:
The value of `int_0^(pi/6) cos^3 3x "d"x` is
Choose the correct alternative:
If `f(x) = int_1^x "e"^(sin u)/u "d"u, x > 1` and `int_1^3 "e"^(sin x^2)/x "d"x = 1/2 [f("a") - f(1)]`. then one of the possible value of a is
Choose the correct alternative:
The value of `int_0^1 (sin^-1x)^2 "d"x` is
Choose the correct alternative:
The value of `int_0^"a" (sqrt("a"^2 - x^2))^3 "d"x` is