हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Evaluate the following integrals as the limits of sum: d∫12(4x2-1)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals as the limits of sum:

`int_1^2 (4x^2 - 1)"d"x`

योग

उत्तर

Here f(x) = 4x2 – 1

a = 1

b = 2

We use the formula

`int_"a"^"b" f(x)"d"x =  lim_("n" -> oo) ("b" - "a")/"n" sum_("r" = 1)^"n" f("a" + ("b" - "a") "r"/"n")`

So we get,

= `lim_("n" -> oo) (2 - 1)/"n" sum_("r" = 1)^"n" (1 + "r"/"n")`

= `lim_("n" -> oo) 1/"n" sum_("r" = 1)^"n" [4(1 + "r"/"n")^2 - 1]`

= `lim_("n" -> oo) 1/"n" sum_("r" = 1)^"n" [4(1 + (2"r")/"n" + "r"^2/"n"^2) - 1]`

= `lim_("n" -> oo) 1/"n" sum_("r" = 1)^"n" [4 + (8"r")/"n" + (4"r"^2)/"n"^2 - 1]`

= `lim_("n" -> oo) 1/"n" [sum_("r" = 1)^"n" (4"r"^2)/"n"^2 + sum_("r" = 1)^"n" (8"r")/"n" + sum_("r" = 1)^"n" 3]`

= `lim_("n"-> oo) 1/"n" [4 xx ("n"("n" + 1)(2"n" + 1))/(6"n"^2) + 8/"n" xx ("n"("n" + 1))/2 + 3"n"]`

= `lim_("n"> oo) 1/"n" [4 xx ("n"^3 (1 + 1/"n")(2 + 1/"n"))/(6"n"^2) + (8"n")/2 (1 + 1/"n") + 3"n"]`

= `lim_("n" -> oo) [2/3 xx (1 + 1/"n")(2 + 1/"n") + 4(1 + 1/"n") + 3]`

= `4/3 + 4 + 3`

= `4/3 +  7`

= `(4 + 21)/3`

= `25/3`

shaalaa.com
Definite Integral as the Limit of a Sum
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.2 [पृष्ठ ९८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.2 | Q 1. (ii) | पृष्ठ ९८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×