हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find an approximate value of ∫11.5(2-x) dx by applying the mid-point rule with the partition {1.1, 1.2, 1.3, 1.4, 1.5} - Mathematics

Advertisements
Advertisements

प्रश्न

Find an approximate value of `int_1^1.5 (2 - x)` dx by applying the mid-point rule with the partition {1.1, 1.2, 1.3, 1.4, 1.5}

योग

उत्तर

Here a = 1

b = 1.5

n = 5

f(x) = 2 – x

So, the width of each subinterval is

h = Δx

= `("b" - "a")/"n"`

= `(1.5- 1)/5`

= 0.1

The partition of the interval is given by

The partition of the interval is given b.y

x0 = 1

x1 = 1.1

x2 = 1.2

x3 = 1.3

x4 = 1.4

x5 = 1.5

The mid-point rule for Riemann sum with equal width Δx is

S = `["f"((x_0 + x_1)/2) + "f"((x_1 + x_2)/2) + ... + "f"((x_("n" - 1) + x_"n")/2]Deltax`

`"f"((x_0 + x_1)/2) = "f"((1 + 1.1)/2)`

= f(1.05)

= `2 – 1.05

= 0.95

`"f"((x_1 + x_2)/2) = "f"((1.1 + 1.2)/2)`

= f(1.15)

= `2 – 1.15

= 0.85

`"f"((x_2 + x_3)/2) = "f"((1.2 + 1.3)/2)`

= f(1.25)

= `2 – 1.25

= 0.75

`"f"((x_3 + x_4)/2) = "f"((1.3 + 1.4)/2)`

= f(1.35)

= `2 – 1.35

= 0.65

`"f"((x_4 + x_5)/2) = "f"((1.4 + 1.5)/2)`

= f(1.45)

= `2 – 1.45

= 0.55

∴ S = (0.95 + 0.85 + 0.75 + 0.65 + 0.55) × 0.1

= 3.75 × 0.1

= 0.375

shaalaa.com
Definite Integral as the Limit of a Sum
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Applications of Integration - Exercise 9.1 [पृष्ठ ९६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 9 Applications of Integration
Exercise 9.1 | Q 3 | पृष्ठ ९६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×