Advertisements
Advertisements
प्रश्न
Expand the following, using suitable identities.
(a2 + b2)2
उत्तर
We have,
(a2 + b2)2 = (a2)2 + (b2)2 + 2a2 × b2 ...[Using the identity, (a + b)2 = a2 + b2 + 2ab]
= a4 + b4 + 2a2b2
APPEARS IN
संबंधित प्रश्न
Show that `(4/3 m - 3/4 n)^2 + 2mn = 16/9 m^2 + 9/16 n^2`
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2
Find the value of x, if 4x = (52)2 − (48)2.
Find the following product: (x − 11) (x + 4)
Find the following product: (y2 − 4) (y2 − 3)
Find the following product: \[\left( y^2 + \frac{5}{7} \right)\left( y^2 - \frac{14}{5} \right)\]
Evaluate the following: 109 × 107
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(x + 5)(x + 6)(x + 7)
Simplify:
(1.5p + 1.2q)2 – (1.5p – 1.2q)2
Expand the following, using suitable identities.
`((2a)/3 + b/3)((2a)/3 - b/3)`