Advertisements
Advertisements
प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2
उत्तर
Here, we will use the identity \[(a - b)(a + b) = a^2 - b^2\]
Let us consider the following expression:
\[\left( 467 \right)^2 - \left( 33 \right)^2 \]
\[ = \left( 467 + 33 \right)\left( 467 - 33 \right)\]
\[ = 500 \times 434\]
\[ = 217000\]
APPEARS IN
संबंधित प्रश्न
Show that `(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2`
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Find the following product: \[\left( z + \frac{3}{4} \right)\left( z + \frac{4}{3} \right)\]
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Evaluate the following: 109 × 107
Evaluate the following: 994 × 1006
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(x + 5)(x + 6)(x + 7)
Simplify:
(ab – c)2 + 2abc
Simplify:
(4.5a + 1.5b)2 + (4.5b + 1.5a)2
Expand the following, using suitable identities.
(x + 3)(x + 7)