Advertisements
Advertisements
प्रश्न
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
उत्तर
Here, we will use the identity \[\left( x + a \right)\left( x - b \right) = x^2 + \left( a - b \right)x - ab\].
\[\left( p^2 + 16 \right)\left( p^2 - \frac{1}{4} \right)\]
\[ = \left( p^2 \right)^2 + \left( 16 - \frac{1}{4} \right)\left( p^2 \right) - 16 \times \frac{1}{4}\]
\[ = p^4 + \frac{63}{4} p^2 - 4\]
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 95 × 105
Simplify the following using the identities: 178 × 178 − 22 × 22
Find the following product: (2x2 − 3) (2x2 + 5)
Evaluate the following: 102 × 106
Evaluate the following: 34 × 36
Expand the following:
(2x + 3y + 4z)2
Expand the following:
(−p + 2q + 3r)2
Expand the following, using suitable identities.
(xy + yz)2
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |