Advertisements
Advertisements
प्रश्न
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |
उत्तर
Column I | Column II |
(1) (21x + 13y)2 | (b) 441x2 + 169y2 + 546xy |
(2) (21x – 13y)2 | (c) 441x2 + 169y2 – 546xy |
(3) (21x – 13y)(21x + 13y) | (a) 441x2 – 169y2 |
Explanation:
(1) We have, (21x + 13y)2 = (21x)2 + (13y)2 + 2 × 21x × 13y ...[Using the identity, (a + b)2 = a2 + b2 + 2ab]
= 441x2 + 169y2 + 546xy
(2) (21x – 13y)2 = (21x)2 + (13y)2 – 2 × 21x × 13y ...[Using the identity, (a – b)2 = a2 + b2 – 2ab]
= 441x2 + 169y2 – 546xy
(3) (21x – 13y)(21x + 13y) = (21x)2 – (13y)2 ...[Using the identity, (a – b)(a + b) = a2 – b2]
= 441x2 – 169y2
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 95 × 105
Simplify the following using the identities: 178 × 178 − 22 × 22
Find the following product: (2x2 − 3) (2x2 + 5)
Find the following product: (x2 + 4) (x2 + 9)
Find the following product: (y2 + 12) (y2 + 6)
Expand the following:
(2x + 3y + 4z)2
Expand the following, using suitable identities.
`(2/3x - 3/2y)^2`
Expand the following, using suitable identities.
`((4x)/5 + y/4)((4x)/5 + (3y)/4)`
Expand the following, using suitable identities.
(x2 + y2)(x2 – y2)
Using suitable identities, evaluate the following.
(995)2