Advertisements
Advertisements
प्रश्न
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |
उत्तर
Column I | Column II |
(1) (21x + 13y)2 | (b) 441x2 + 169y2 + 546xy |
(2) (21x – 13y)2 | (c) 441x2 + 169y2 – 546xy |
(3) (21x – 13y)(21x + 13y) | (a) 441x2 – 169y2 |
Explanation:
(1) We have, (21x + 13y)2 = (21x)2 + (13y)2 + 2 × 21x × 13y ...[Using the identity, (a + b)2 = a2 + b2 + 2ab]
= 441x2 + 169y2 + 546xy
(2) (21x – 13y)2 = (21x)2 + (13y)2 – 2 × 21x × 13y ...[Using the identity, (a – b)2 = a2 + b2 – 2ab]
= 441x2 + 169y2 – 546xy
(3) (21x – 13y)(21x + 13y) = (21x)2 – (13y)2 ...[Using the identity, (a – b)(a + b) = a2 – b2]
= 441x2 – 169y2
APPEARS IN
संबंधित प्रश्न
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
Simplify the following using the identities: 178 × 178 − 22 × 22
Simplify the following using the identities: \[\frac{8 . 63 \times 8 . 63 - 1 . 37 \times 1 . 37}{0 . 726}\]
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Expand the following:
(3a + 1)(3a – 2)(3a + 4)
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(2x + 3)(2x – 5)(2x – 6)
Evaluate the following by using identities:
983
On dividing 57p2qr by 114pq, we get ______.
Simplify:
`(3/4x - 4/3y)^2 + 2xy`
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`