Advertisements
Advertisements
प्रश्न
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
उत्तर
Let us consider the following expression: \[\frac{{58}^2 - {42}^2}{16}\]
Using the identity
\[\left( a + b \right)\left( a - b \right) = a^2 - b^2\], we get:
\[\frac{{58}^2 - {42}^2}{16} = \frac{\left( 58 + 42 \right)\left( 58 - 42 \right)}{16}\]
\[\Rightarrow \frac{{58}^2 - {42}^2}{16} = \frac{100 \times 16}{16}\]
\[ \Rightarrow \frac{{58}^2 - {42}^2}{16} = 100\]
Thus, the answer is 100.
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 197 × 203
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
Find the value of x, if 4x = (52)2 − (48)2.
Find the following product: \[\left( z + \frac{3}{4} \right)\left( z + \frac{4}{3} \right)\]
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(x + 5)(x + 6)(x + 7)
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(2x + 3)(2x – 5)(2x – 6)
Evaluate the following by using identities:
10013
Multiply the following:
(3x2 + 4x – 8), (2x2 – 4x + 3)
Simplify:
`(7/9 a + 9/7 b)^2 - ab`
Simplify:
(b2 – 49)(b + 7) + 343