Advertisements
Advertisements
प्रश्न
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
उत्तर
Let us consider the following expression: \[\frac{{58}^2 - {42}^2}{16}\]
Using the identity
\[\left( a + b \right)\left( a - b \right) = a^2 - b^2\], we get:
\[\frac{{58}^2 - {42}^2}{16} = \frac{\left( 58 + 42 \right)\left( 58 - 42 \right)}{16}\]
\[\Rightarrow \frac{{58}^2 - {42}^2}{16} = \frac{100 \times 16}{16}\]
\[ \Rightarrow \frac{{58}^2 - {42}^2}{16} = 100\]
Thus, the answer is 100.
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (467)2 − (33)2
Find the following product: (x + 4) (x + 7)
Find the following product: (3x + 5) (3x + 11)
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Evaluate the following: 53 × 55
Expand the following:
(2x + 3y + 4z)2
Expand the following, using suitable identities.
(2x + 9)(2x – 7)
Expand the following, using suitable identities.
(0.9p – 0.5q)2
Using suitable identities, evaluate the following.
(103)2
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |