Advertisements
Advertisements
प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 9.8 × 10.2
उत्तर
Here, we will use the identity \[(a - b)(a + b) = a^2 - b^2\]
Let us consider the following product: \[9 . 8 \times 10 . 2\]
\[\because \frac{9 . 8 + 10 . 2}{2} = \frac{20}{2} = 10\]; therefore, we will write the above product as:
\[9 . 8 \times 10 . 2\]
\[ = \left( 10 - 0 . 2 \right)\left( 10 + 0 . 2 \right)\]
\[ = \left( 10 \right)^2 - \left( 0 . 2 \right)^2 \]
\[ = 100 - 0 . 04\]
\[ = 99 . 96\]
Thus, the answer is 99.96.
APPEARS IN
संबंधित प्रश्न
Show that `(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2`
Show that (a - b)(a + b) + (b - c) (b + c) + (c - a) (c + a) = 0
Find the value of x, if 5x = (50)2 − (40)2.
Find the following product: (y2 + 12) (y2 + 6)
Find the following product: \[\left( y^2 + \frac{5}{7} \right)\left( y^2 - \frac{14}{5} \right)\]
Expand the following:
(2p + 3)(2p – 4)(2p – 5)
Multiply the following:
(3x2 + 4x – 8), (2x2 – 4x + 3)
Simplify:
(3x + 2y)2 + (3x – 2y)2
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`
Expand the following, using suitable identities.
(2x – 5y)(2x – 5y)