Advertisements
Advertisements
प्रश्न
Multiply the following:
(3x2 + 4x – 8), (2x2 – 4x + 3)
उत्तर
We have,
(3x2 + 4x – 8) and (2x2 – 4x + 3)
∴ (3x2 + 4x – 8)(2x2 – 4x + 3) = 3x2(2x2 – 4x + 3) + 4x(2x2 – 4x + 3) – 8(2x2 – 4x + 3)
= 6x4 – 12x3 + 9x2 + 8x3 – 16x2 + 12x – 16x2 + 32x – 24
= 6x4 – 12x3 + 8x3 + 9x2 – 16x2 – 16x2 + 12x + 32x – 24 ...[Grouping like terms]
= 6x4 – 4x3 – 23x2 + 44x – 24
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 9.8 × 10.2
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
Find the following product: (2x2 − 3) (2x2 + 5)
Expand the following:
(3a + 1)(3a – 2)(3a + 4)
Simplify:
(3x + 2y)2 + (3x – 2y)2
Expand the following, using suitable identities.
(x + 3)(x + 7)
Expand the following, using suitable identities.
`((2x)/3 - 2/3)((2x)/3 + (2a)/3)`
Using suitable identities, evaluate the following.
(49)2
Perform the following division:
(3pqr – 6p2q2r2) ÷ 3pq
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |