Advertisements
Advertisements
प्रश्न
Find the value of x, if 5x = (50)2 − (40)2.
उत्तर
Let us consider the following equation: \[5x = \left( 50 \right)^2 - \left( 40 \right)^2\]
Using the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\], we get:
\[5x = \left( 50 \right)^2 - \left( 40 \right)^2 \]
\[5x = \left( 50 + 40 \right)\left( 50 - 40 \right)\]
\[5x = 90 \times 10 = 900\]
\[\Rightarrow 5x = 900\]
\[\Rightarrow x = 180\] (Dividing both sides by 5)
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: (79)2 − (69)2
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
Find the value of x, if 14x = (47)2 − (33)2.
Find the following product: \[\left( x + \frac{4}{3} \right)\left( x + \frac{3}{4} \right)\]
Evaluate the following: 35 × 37
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
2p is the factor of 8pq
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Expand the following, using suitable identities.
(7x + 5)2
Expand the following, using suitable identities.
(0.9p – 0.5q)2