Advertisements
Advertisements
प्रश्न
Find the value of x, if 5x = (50)2 − (40)2.
उत्तर
Let us consider the following equation: \[5x = \left( 50 \right)^2 - \left( 40 \right)^2\]
Using the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\], we get:
\[5x = \left( 50 \right)^2 - \left( 40 \right)^2 \]
\[5x = \left( 50 + 40 \right)\left( 50 - 40 \right)\]
\[5x = 90 \times 10 = 900\]
\[\Rightarrow 5x = 900\]
\[\Rightarrow x = 180\] (Dividing both sides by 5)
APPEARS IN
संबंधित प्रश्न
Show that `(4/3 m - 3/4 n)^2 + 2mn = 16/9 m^2 + 9/16 n^2`
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Find the following product: (x + 7) (x − 5)
Evaluate the following: 103 × 96
Expand the following:
(3a + 1)(3a – 2)(3a + 4)
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
Simplify:
(3x + 2y)2 – (3x – 2y)2
Expand the following, using suitable identities.
(x + 3)(x + 7)
Expand the following, using suitable identities.
(0.9p – 0.5q)2