Advertisements
Advertisements
प्रश्न
Find the value of x, if 14x = (47)2 − (33)2.
उत्तर
Let us consider the following equation: \[14x = \left( 47 \right)^2 - \left( 33 \right)^2\]
Using the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\],we get:
\[14x = \left( 47 \right)^2 - \left( 33 \right)^2 \]
\[14x = \left( 47 + 33 \right)\left( 47 - 33 \right)\]
\[14x = 80 \times 14 = 1120\]
\[\Rightarrow 14x = 1120\]
\[\Rightarrow x = 80\]
(Dividing both sides by 14)
APPEARS IN
संबंधित प्रश्न
Find the value of x, if 5x = (50)2 − (40)2.
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(x + 5)(x + 6)(x + 7)
On dividing p(4p2 – 16) by 4p(p – 2), we get ______.
Simplify:
(3x + 2y)2 + (3x – 2y)2
Simplify:
(x2 – 4) + (x2 + 4) + 16
Simplify:
(s2t + tq2)2 – (2stq)2
Expand the following, using suitable identities.
(x2y – xy2)2
Expand the following, using suitable identities.
`(4/5a + 5/4b)^2`
Perform the following division:
(ax3 – bx2 + cx) ÷ (– dx)