Advertisements
Advertisements
Question
Find the value of x, if 14x = (47)2 − (33)2.
Solution
Let us consider the following equation: \[14x = \left( 47 \right)^2 - \left( 33 \right)^2\]
Using the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\],we get:
\[14x = \left( 47 \right)^2 - \left( 33 \right)^2 \]
\[14x = \left( 47 + 33 \right)\left( 47 - 33 \right)\]
\[14x = 80 \times 14 = 1120\]
\[\Rightarrow 14x = 1120\]
\[\Rightarrow x = 80\]
(Dividing both sides by 14)
APPEARS IN
RELATED QUESTIONS
Find the following product: (x + 7) (x − 5)
Find the following product: (2x2 − 3) (2x2 + 5)
Find the following product: (3x2 − 4xy) (3x2 − 3xy)
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Evaluate the following: 102 × 106
Evaluate the following: 35 × 37
Multiply the following:
(3x2 + 4x – 8), (2x2 – 4x + 3)
Simplify:
(1.5p + 1.2q)2 – (1.5p – 1.2q)2
Expand the following, using suitable identities.
(xy + yz)2
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |