Advertisements
Advertisements
Question
Find the following product: (p2 + 16) \[\left( p^2 - \frac{1}{4} \right)\]
Solution
Here, we will use the identity \[\left( x + a \right)\left( x - b \right) = x^2 + \left( a - b \right)x - ab\].
\[\left( p^2 + 16 \right)\left( p^2 - \frac{1}{4} \right)\]
\[ = \left( p^2 \right)^2 + \left( 16 - \frac{1}{4} \right)\left( p^2 \right) - 16 \times \frac{1}{4}\]
\[ = p^4 + \frac{63}{4} p^2 - 4\]
APPEARS IN
RELATED QUESTIONS
Show that `(4pq + 3q)^2 - (4pq - 3q)^2 = 48pq^2`
Simplify the following using the identities: 178 × 178 − 22 × 22
Find the following product: \[\left( x + \frac{4}{3} \right)\left( x + \frac{3}{4} \right)\]
Evaluate the following: 103 × 96
Expand the following:
(−p + 2q + 3r)2
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Simplify:
(b2 – 49)(b + 7) + 343
Expand the following, using suitable identities.
(2x – 5y)(2x – 5y)
Using suitable identities, evaluate the following.
105 × 95