Advertisements
Advertisements
Question
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
Solution
(x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
(a + b + c) (a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc .
∴ (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
= x3 + (–2y)3 + (3z)3 – 3(x)(–2y)(3z)
= x3 – 8y3 + 27z3 + 18xyz
APPEARS IN
RELATED QUESTIONS
Show that (3x + 7)2 − 84x = (3x − 7)2
Simplify the following using the identities: 178 × 178 − 22 × 22
Find the value of x, if 14x = (47)2 − (33)2.
Find the following product: (z2 + 2) (z2 − 3)
On dividing 57p2qr by 114pq, we get ______.
Expand the following, using suitable identities.
(2x – 5y)(2x – 5y)
Expand the following, using suitable identities.
(7x + 5)2
Using suitable identities, evaluate the following.
(98)2
Using suitable identities, evaluate the following.
(1005)2
Using suitable identities, evaluate the following.
47 × 53