Advertisements
Advertisements
प्रश्न
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
उत्तर
(x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
(a + b + c) (a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc .
∴ (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
= x3 + (–2y)3 + (3z)3 – 3(x)(–2y)(3z)
= x3 – 8y3 + 27z3 + 18xyz
APPEARS IN
संबंधित प्रश्न
Show that (9p - 5q)2 + 180pq = (9p + 5q)2
Simplify the following using the identities: \[\frac{{58}^2 - {42}^2}{16}\]
Find the value of x, if 5x = (50)2 − (40)2.
Find the following product: \[\left( x + \frac{1}{5} \right)(x + 5)\]
Evaluate the following: 35 × 37
Expand the following:
(−p + 2q + 3r)2
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
On dividing 57p2qr by 114pq, we get ______.
Expand the following, using suitable identities.
`((4x)/5 + y/4)((4x)/5 + (3y)/4)`
Carry out the following division:
51x3y2z ÷ 17xyz