Advertisements
Advertisements
प्रश्न
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
उत्तर
We know x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)
x3 + y3 + z3 = (x + y + z) (x2 + y2 + z2 – xy – yz – zx) + 3xyz
8x3 – 27y3 – 64z3 = (2x)3 + (– 3y)3 + (– 4z)3
= (2x – 3y – 4z) [(2x)2 + (– 3y)2 + (– 4z)2 – (2x)(– 3y) – (– 3y)(– 4z) – (– 4z)(2x)] + 3(2x)(– 3y)(– 4z)
= 0 (4x2 + 9y2 + 16z2 + 6xy – 12yz + 8xz) + 72xyz
= 72xyz
8x3 – 27y3 – 64z3 = 72xyz
APPEARS IN
संबंधित प्रश्न
Simplify the following using the identities: \[\frac{198 \times 198 - 102 \times 102}{96}\]
Find the value of x, if 4x = (52)2 − (48)2.
Find the following product: (x + 7) (x − 5)
Find the following product: \[\left( x + \frac{4}{3} \right)\left( x + \frac{3}{4} \right)\]
Find the following product: (3x + 5) (3x + 11)
Find the following product: (y2 + 12) (y2 + 6)
Multiply the following:
(2x – 2y – 3), (x + y + 5)
Simplify:
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab)
Expand the following, using suitable identities.
`((2a)/3 + b/3)((2a)/3 - b/3)`
Using suitable identities, evaluate the following.
105 × 95