Advertisements
Advertisements
प्रश्न
Simplify:
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab)
उत्तर
We have,
(a – b) (a2 + b2 + ab) – (a + b) (a2 + b2 – ab) = a(a2 + b2 + ab) – b(a2 + b2 + ab) – a(a2 + b2 – ab) – b(a2 + b2 – ab)
= a3 + ab2 + a2b – ba2 – b3 – ab2 – a3 – ab2 + a2b – ba2 – b3 + ab2
= (a3 – a3) + (– b3 – b3) + (ab2 – ab2) + (a2b – a2b + a2b – a2b)
= 0 – 2b3 + 0 + 0 + 0
= – 2b3
APPEARS IN
संबंधित प्रश्न
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 1.8 × 2.2
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Find the following product: (x − 3) ( x − 2)
Find the following product: \[\left( y^2 + \frac{5}{7} \right)\left( y^2 - \frac{14}{5} \right)\]
Using algebraic identity, find the coefficients of x2, x and constant term without actual expansion
(x + 5)(x + 6)(x + 7)
If 2x – 3y – 4z = 0, then find 8x3 – 27y3 – 64z3
Simplify:
`(3/4x - 4/3y)^2 + 2xy`
Simplify:
(1.5p + 1.2q)2 – (1.5p – 1.2q)2
Perform the following division:
(ax3 – bx2 + cx) ÷ (– dx)
Match the expressions of column I with that of column II:
Column I | Column II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |