Advertisements
Advertisements
प्रश्न
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
उत्तर
We will use the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] to obtain the value of xy.
\[\text { Squaring (2x + 3y) and (2x - 3y) both and then subtracting them, we get }:\]
\[\left( 2x + 3y \right)^2 - \left( 2x - 3y \right)^2 = \left\{ \left( 2x + 3y \right) + \left( 2x - 3y \right) \right\}\left\{ \left( 2x + 3y \right) - \left( 2x - 3y \right) \right\} = 4x \times 6y = 24xy\]
\[ \Rightarrow \left( 2x + 3y \right)^2 - \left( 2x - 3y \right)^2 = 24xy\]
\[\Rightarrow 24xy = \left( 2x + 3y \right)^2 - \left( 2x - 3y \right)^2 \]
\[ \Rightarrow 24xy = \left( 14 \right)^2 - \left( 2 \right)^2 \]
\[ \Rightarrow 24xy = \left( 14 + 2 \right)\left( 14 - 2 \right) ( \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 )\]
\[ \Rightarrow 24xy = 16 \times 12\]
\[ \Rightarrow xy = \frac{16 \times 12}{24} (\text { Dividing both sides by24 })\]
\[ \Rightarrow xy = 8\]
APPEARS IN
संबंधित प्रश्न
Find the value of x, if 5x = (50)2 − (40)2.
Find the following product: (y2 − 4) (y2 − 3)
Find the following product: (z2 + 2) (z2 − 3)
Evaluate the following: 994 × 1006
Expand the following:
(2p + 3)(2p – 4)(2p – 5)
By using identity evaluate the following:
`1 + 1/8 - 27/8`
Simplify:
(ab – c)2 + 2abc
Expand the following, using suitable identities.
`(4/5p + 5/3q)^2`
Expand the following, using suitable identities.
(0.9p – 0.5q)2
Carry out the following division:
51x3y2z ÷ 17xyz