Advertisements
Advertisements
Question
If 2x + 3y = 14 and 2x − 3y = 2, find the value of xy.
[Hint: Use (2x + 3y)2 − (2x − 3y)2 = 24xy]
Solution
We will use the identity \[\left( a + b \right)\left( a - b \right) = a^2 - b^2\] to obtain the value of xy.
\[\text { Squaring (2x + 3y) and (2x - 3y) both and then subtracting them, we get }:\]
\[\left( 2x + 3y \right)^2 - \left( 2x - 3y \right)^2 = \left\{ \left( 2x + 3y \right) + \left( 2x - 3y \right) \right\}\left\{ \left( 2x + 3y \right) - \left( 2x - 3y \right) \right\} = 4x \times 6y = 24xy\]
\[ \Rightarrow \left( 2x + 3y \right)^2 - \left( 2x - 3y \right)^2 = 24xy\]
\[\Rightarrow 24xy = \left( 2x + 3y \right)^2 - \left( 2x - 3y \right)^2 \]
\[ \Rightarrow 24xy = \left( 14 \right)^2 - \left( 2 \right)^2 \]
\[ \Rightarrow 24xy = \left( 14 + 2 \right)\left( 14 - 2 \right) ( \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 )\]
\[ \Rightarrow 24xy = 16 \times 12\]
\[ \Rightarrow xy = \frac{16 \times 12}{24} (\text { Dividing both sides by24 })\]
\[ \Rightarrow xy = 8\]
APPEARS IN
RELATED QUESTIONS
Show that `(4/3 m - 3/4 n)^2 + 2mn = 16/9 m^2 + 9/16 n^2`
Simplify the following using the formula: (a − b)(a + b) = a2 − b2: 113 × 87
Find the following product: (y2 − 4) (y2 − 3)
Find the following product: \[\left( x + \frac{4}{3} \right)\left( x + \frac{3}{4} \right)\]
Find the following product: (2x2 − 3) (2x2 + 5)
Evaluate the following: 34 × 36
Simplify: (x – 2y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3xz)
Simplify:
(3x + 2y)2 + (3x – 2y)2
Expand the following, using suitable identities.
(2x + 9)(2x – 7)
Perform the following division:
(x3y3 + x2y3 – xy4 + xy) ÷ xy