Advertisements
Advertisements
Question
If x2 + y2 = 29 and xy = 2, find the value of x + y.
Solution
We have:
\[\left( x + y \right)^2 = x^2 + 2xy + y^2 \]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{x^2 + 2xy + y^2}\]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{29 + 2 \times 2} ( \because x^2 + y^2 = 29 \text { and } xy = 2)\]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{29 + 4}\]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{33}\]
APPEARS IN
RELATED QUESTIONS
Get the algebraic expression in the following case using variables, constants and arithmetic operations.
Numbers x and y both squared and added.
If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2
If a2 + b2 + c2 = 20 and a + b + c = 0, find ab + bc + ca.
The value of \[\frac{(2 . 3 )^3 - 0 . 027}{(2 . 3 )^2 + 0 . 69 + 0 . 09}\]
If 3x = a + b + c, then the value of (x − a)3 + (x −b)3 + (x − c)3 − 3(x − a) (x − b) (x −c) is
Evaluate: (3x - 1)(4x3 - 2x2 + 6x - 3)
Multiply: (2x + 3y)(2x + 3y)
Divide: p2 + 4p + 4 by p + 2
Divide: 35a3 + 3a2b - 2ab2 by 5a - b
–b – 0 is equal to ______.