Advertisements
Advertisements
Question
If x2 + y2 = 29 and xy = 2, find the value of x - y.
Solution
We have:
\[\left( x - y \right)^2 = x^2 - 2xy + y^2 \]
\[ \Rightarrow \left( x - y \right) = \pm \sqrt{x^2 - 2xy + y^2}\]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{29 - 2 \times 2} (\because x^2 + y^2 = 29 \text { and } xy = 2)\]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{29 - 4}\]
\[ \Rightarrow \left( x + y \right) = \pm \sqrt{25}\]
\[ \Rightarrow \left( x + y \right) = \pm 5\]
APPEARS IN
RELATED QUESTIONS
Factorize: x3 + x - 3x2 - 3
Factorize `x^2 + 2sqrt3x - 24`
Find the value of the following expression: 81x2 + 16y2 − 72xy, when \[x = \frac{2}{3}\] and \[y = \frac{3}{4}\]
If a + b + c = 0, then write the value of a3 + b3 + c3.
If (x + y)3 − (x − y)3 − 6y(x2 − y2) = ky2, then k =
Write the number of the term of the following polynomial.
5x2 + 3 x ax
Multiply: (-2x + 3y)(2x - 3y)
Multiply: (1 + 6x2 - 4x3)(-1 + 3x - 3x2)
Write the coefficient of x2 and x in the following polynomials
`4 + 2/5x^2 - 3x`
Write the variables, constant and terms of the following expression
18 + x – y