Advertisements
Advertisements
Question
If (x + y)3 − (x − y)3 − 6y(x2 − y2) = ky2, then k =
Options
1
2
4
8
Solution
The given equation is
(x + y)3 − (x − y)3 − 6y(x2 − y2) = ky2
Recall the formula
`a^3 - b^3 = (a-b)(a^2 +ab +b^2)`
Using the above formula, we have
`(x+y)^3 - (x-y)^3 - 6y(x^2 -y^2 )ky^2`
`⇒ {(x+y)^3 - (x-y)^3} - 6y (x^2 - y^2) = ky^2`
` ⇒ 2y(x^2 + 2xy + y^2 +x^2 - y^2 - x^2 - 2xy +y^2) -6y(x^2 - y^2) = ky^3`
`⇒ 2y(3x^2 +y^2) -6y(x^2 - y^2) = ky^3`
`⇒6x^2y +2y^3 - 6x^2 y +6y^3 = ky^3`
`⇒ 8y^3 = ky^3`
`⇒ ky^3 = 8y^3`
⇒ k =8, provided y ≠0.
APPEARS IN
RELATED QUESTIONS
Factorize x( x - 2)( x - 4) + 4x - 8
Factorize (a - b + c)2 + (b - c + a)2 + 2(a - b + c) (b - c + a)
Factorize x2 - y2 - 4xz + 4z2
Factorize `x^2 - 2sqrt2x - 30`
Factorize the following expressions:
10x4y – 10xy4
Multiply: x2 + 4y2 + z3 + 2xy + xz − 2yz by x − 2y − z
If 3x = a + b + c, then the value of (x − a)3 + (x −b)3 + (x − c)3 − 3(x − a) (x − b) (x −c) is
Evaluate: (6p2 - 8pq + 2q2) (- 5p)
Divide: 3y3 - 9ay2 - 6ab2y by -3y
Divide: 6x2 - xy - 35y2 by 2x - 5y