Advertisements
Advertisements
Question
Multiply: x2 + 4y2 + z3 + 2xy + xz − 2yz by x − 2y − z
Solution
The given expression is
x2 + 4y2 + z3 + 2xy + xz − 2yz
We have to multiply the above expression by. `(x-2y -z)`
The required product is
`(x-2y-z)(x^2 +4y^2 +z^2+2xy+ xz - 2yz)`
` = {x + (-2y)+(-z)}{(x)^2 +(-2y)^2 + (-z)^2 -x.(-2y) - (-2y).(-z) - (-z).x}`
Recall the formula
`a^3 +b^3 +c^3 -3abc = (a+b+c)(a^2 +b^2 +c^2 - ab - bc - ca)`
Using the above formula, we have
` = x^3 + ( -2y)^3 + (-z)^3 -3.x.(-2y).(-z)`
` = x^3 -8y^3 - z^3 - 6xyz`
APPEARS IN
RELATED QUESTIONS
Factorize x (x3 - y3 ) + 3xy ( x - y )
Factorize `6ab - b^2 + 12ac - 2bc`
Factorize the following expressions:
p3 + 27
Factorize the following expressions:
x4y4 - xy
`2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3 sqrt6abc`
8x3 -125y3 +180xy + 216
The factors of 8a3 + b3 − 6ab + 1 are
Multiply: (2x - 3y)(2x - 3y)
Divide: - 16ab2c by 6abc
–b – 0 is equal to ______.