Advertisements
Advertisements
Question
Multiply: x2 + 4y2 + 2xy − 3x + 6y + 9 by x − 2y + 3
Solution
The given expression is
`x^2 +4y^2 +2xy -3x +6y+9`
We have to multiply the above expression by (x - 2y +3).
The required product is
`(x-2y+3)(x^2 +4y^2 +2xy - 3x +6y +9)`
` = {x+(-2y)+3}{(x)^2 + (-2y)^2 +(3)^2 -x.(-2y) -(-2y).(3) - (3).x}`
Recall the formula
`a^3+b^3 +c^3-3abc = (a+b+c)(a^2 +b^2 +c^2 - ab - bc-ca)`
Using the above formula, we have
` = x^3 +(-2y)^3 + (3)^3 - 3.x.(-2y).(3)`
` = x^3 -8y^3 +27 +18xy`
APPEARS IN
RELATED QUESTIONS
Factorize x3 - 2x2 y + 3xy2 - 6y3
Factorize the following expressions:
a12 + b12
Factorize `8/27 x^3 + 1 + 4/3 x^2 + 2x`
Factorize 8x2 + y3 +12x2 y + 6xy2
If x2 + y2 = 29 and xy = 2, find the value of x4 + y4 .
The factors of x3 −x2y − xy2 + y3 are
Evaluate: (8 - 12x + 7x2 - 6x3)(5 - 2x)
Divide: 8x + 24 by 4
Divide: 9a4b - 15a3b2 + 12a2b3 by - 3a2b
Express the following properties with variables x, y and z.
Distributive property of multiplication over addition