Advertisements
Advertisements
Question
If x2 + y2 = 29 and xy = 2, find the value of x4 + y4 .
Solution
We have:
\[\left( x^2 + y^2 \right)^2 = x^4 + 2 x^2 y^2 + y^4 \]
\[ \Rightarrow x^4 + y^4 = \left( x^2 + y^2 \right)^2 - 2 x^2 y^2 \]
\[ \Rightarrow x^4 + y^4 = \left( x^2 + y^2 \right)^2 - 2 \left( xy \right)^2 \]
\[ \Rightarrow x^4 + y^4 = {29}^2 - 2 \left( 2 \right)^2 (\because x^2 + y^2 = 29 \text { and } xy = 2)\]
\[ \Rightarrow x^4 + y^4 = 841 - 8\]
\[ \Rightarrow x^4 + y^4 = 833\]
APPEARS IN
RELATED QUESTIONS
Factorize x (x3 - y3 ) + 3xy ( x - y )
Factorize `[x^2 + 1/x^2] - 4[x + 1/x] + 6`
8x3 -125y3 +180xy + 216
Write the value of 303 + 203 − 503.
Divide: - 16ab2c by 6abc
Divide: 12x3y - 8x2y2 + 4x2y3 by 4xy
Divide: 6x3 + 5x2 − 21x + 10 by 3x − 2
Find the average (A) of four quantities p, q, r and s. If A = 6, p = 3, q = 5 and r = 7; find the value of s.
Write the coefficient of x2 and x in the following polynomials
`x^2 - 7/2 x + 8`
Express the following properties with variables x, y and z.
Associative property of multiplication