Advertisements
Advertisements
प्रश्न
If x2 + y2 = 29 and xy = 2, find the value of x4 + y4 .
उत्तर
We have:
\[\left( x^2 + y^2 \right)^2 = x^4 + 2 x^2 y^2 + y^4 \]
\[ \Rightarrow x^4 + y^4 = \left( x^2 + y^2 \right)^2 - 2 x^2 y^2 \]
\[ \Rightarrow x^4 + y^4 = \left( x^2 + y^2 \right)^2 - 2 \left( xy \right)^2 \]
\[ \Rightarrow x^4 + y^4 = {29}^2 - 2 \left( 2 \right)^2 (\because x^2 + y^2 = 29 \text { and } xy = 2)\]
\[ \Rightarrow x^4 + y^4 = 841 - 8\]
\[ \Rightarrow x^4 + y^4 = 833\]
APPEARS IN
संबंधित प्रश्न
Factorize: `a^2 x^2 + (ax^2 + 1)x + a`
Factorize a2 + 2ab + b2 - c2
Factorize the following expressions
64a3 – b3
8x3 + 27y3 - 216z3 + 108xyz
Write the value of 253 − 753 + 503.
Multiply: (xy + 2b)(xy - 2b)
Divide: 6x3 + 5x2 − 21x + 10 by 3x − 2
Divide: x5 - 15x4 - 10x2 by -5x2
Write the coefficient of x2 and x in the following polynomials
`sqrt(3)x^2 + sqrt(2)x + 0.5`
If x = 2 and y = 3, then find the value of the following expressions
2x – 3y