Advertisements
Advertisements
प्रश्न
Divide: 6x3 + 5x2 − 21x + 10 by 3x − 2
उत्तर १
6x3 + 5x2 − 21x + 10 by 3x − 2
2x2 + 3x − 5
`"3x" − "2")overline("6x"^3 + "5x"^2 − 21"x" + 10)(`
6x3 − 4x2
− +
9x2 − 21x
9x2 − 6x
− +
− 15x + 10
− 15x + 10
+ −
xxx
= 2x2 + 3x − 5
उत्तर २
`(6x^3 + 5x^2 - 21x + 10)/(3x-2)`
Divide the leading term of the numerator (6x3) by the leading term of the denominator (3x): `(6x^2)/(3x) = 2x^2`
(3x − 2) × 2x2 = 6x3 − 4x2
Subtract 6x3 − 4x2 from the original numerator:
(6x3 + 5x2 − 21x + 10) − (6x3 − 4x2) = 9x2 − 21x + 10.
Divide the leading term of the new expression (9x2) by the leading term of the divisor (3x): `(9x^2)/(3x) = 3x`
(3x − 2) × 3x = 9x2 − 6x.
Subtract 9x2 − 6x from the current expression:
(9x2 − 21x + 10) − (9x2 − 6x) = −15x + 10
Divide the leading term of the new expression (−15x) by the leading term of the divisor (3x): `(-15x)/(3x) = -5`
(3x − 2) × − 5 = −15x + 10
Subtract −15x + 10 from the current expression:
(−15x + 10) − (−15x + 10) = 0.
The quotient is: 2x2 + 3x - 5
APPEARS IN
संबंधित प्रश्न
Get the algebraic expression in the following case using variables, constants and arithmetic operations.
Numbers x and y both squared and added.
Factorize: x3 + x - 3x2 - 3
Factorize `9(2a - b)^2 - 4(2a - b) - 13`
(a – 3b)3 + (3b – c)3 + (c – a)3
(x + y)3 − (x − y)3 can be factorized as
Evaluate: (4m - 2)(m2 + 5m - 6)
Multiply: (1 + 6x2 - 4x3)(-1 + 3x - 3x2)
Divide: - 50 + 40p by 10p
Complete the table.
× | 2x2 | −2xy | x4y3 | 2xyz | (___)xz2 |
x4 | |||||
(___) | 4x5y4 | ||||
−x2y | |||||
2y2z | −10xy2z3 | ||||
−3xyz | |||||
(___) | −14xyz2 |
An algebraic statement which is equivalent to the verbal statement “Three times the sum of ‘x’ and ‘y’ is