Advertisements
Advertisements
प्रश्न
Divide: 6x3 + 5x2 − 21x + 10 by 3x − 2
उत्तर १
6x3 + 5x2 − 21x + 10 by 3x − 2
2x2 + 3x − 5
`"3x" − "2")overline("6x"^3 + "5x"^2 − 21"x" + 10)(`
6x3 − 4x2
− +
9x2 − 21x
9x2 − 6x
− +
− 15x + 10
− 15x + 10
+ −
xxx
= 2x2 + 3x − 5
उत्तर २
`(6x^3 + 5x^2 - 21x + 10)/(3x-2)`
Divide the leading term of the numerator (6x3) by the leading term of the denominator (3x): `(6x^2)/(3x) = 2x^2`
(3x − 2) × 2x2 = 6x3 − 4x2
Subtract 6x3 − 4x2 from the original numerator:
(6x3 + 5x2 − 21x + 10) − (6x3 − 4x2) = 9x2 − 21x + 10.
Divide the leading term of the new expression (9x2) by the leading term of the divisor (3x): `(9x^2)/(3x) = 3x`
(3x − 2) × 3x = 9x2 − 6x.
Subtract 9x2 − 6x from the current expression:
(9x2 − 21x + 10) − (9x2 − 6x) = −15x + 10
Divide the leading term of the new expression (−15x) by the leading term of the divisor (3x): `(-15x)/(3x) = -5`
(3x − 2) × − 5 = −15x + 10
Subtract −15x + 10 from the current expression:
(−15x + 10) − (−15x + 10) = 0.
The quotient is: 2x2 + 3x - 5
APPEARS IN
संबंधित प्रश्न
Factorize a2 - b2 + 2bc - c2
Factorize `5sqrt5x^2 + 20x + 3sqrt5`
Factorize a3 x3 - 3a2bx2 + 3ab2 x - b3
If x2 + y2 = 29 and xy = 2, find the value of x + y.
Write the value of 253 − 753 + 503.
If 3x = a + b + c, then the value of (x − a)3 + (x −b)3 + (x − c)3 − 3(x − a) (x − b) (x −c) is
Evaluate:
(i) (a + b)(a - b)
(ii) (a2 + b2)(a + b)(a - b); using the result of (i).
(iii) (a4 + b4)(a2 + b2)(a + b)(a - b); using the result of (ii).
Divide: 3y3 - 9ay2 - 6ab2y by -3y
Write the variables, constant and terms of the following expression
b + 2
In the expression 2πr, the algebraic variable is ______.