Advertisements
Advertisements
प्रश्न
If 3x = a + b + c, then the value of (x − a)3 + (x −b)3 + (x − c)3 − 3(x − a) (x − b) (x −c) is
पर्याय
a + b + c
(a − b) (b − c) (c − a)
0
none of these
उत्तर
The given expression is
(x − a)3 + (x −b)3 + (x − c)3 − 3(x − a) (x − b) (x −c)
Recall the formula
`a^3 +b^3 +c^3 - 3abc = (a+b+c)(a^2 + b^2+ c^2 - ab - bc +_ ca)`
Using the above formula the given expression becomes
(x − a)3 + (x −b)3 + (x − c)3 − 3(x − a) (x − b) (x −c)
`{(x-a) +(x-b) + (x-c)} {(x-a)^2+(x-b)^2+(x-c)^2 -(x-a)(x-b)-(x-b)(x-c) - (x-c)(x-a)}`
`(x-a +x-b+x -c) {(x-a)^2+(x-b)^2+(x-c)^2 -(x-a)(x-b)-(x-b)(x-c) - (x-c)(x-a)} `
`(3x-a -b-c) {(x-a)^2+(x-b)^2+(x-c)^2 -(x-a)(x-b)-(x-b)(x-c) - (x-c)(x-a)}`
Given that
`3x = (a+b+c)`
` ⇒ 3x -a-b-c =0`
Therefore the value of the given expression is
(x − a)3 + (x −b)3 + (x − c)3 − 3(x − a) (x − b) (x −c)
`= 0.{(x-a)^2+(x-b)^2+(x-c)^2 -(x-a)(x-b)-(x-b)(x-c) - (x-c)(x-a)}`
`=0`
APPEARS IN
संबंधित प्रश्न
Factorize x2 - y2 - 4xz + 4z2
Factorize the following expressions:
54x6y + 2x3y4
Simplify : \[\frac{1 . 2 \times 1 . 2 \times 1 . 2 - 0 . 2 \times 0 . 2 \times 0 . 2}{1 . 2 \times 1 . 2 + 1 . 2 \times 0 . 2 + 0 . 2 \times 0 . 2}\]
Multiply: x2 + 4y2 + 2xy − 3x + 6y + 9 by x − 2y + 3
The factors of 8a3 + b3 − 6ab + 1 are
Separate the constants and variables from the following :
`-7,7+"x",7"x"+"yz",sqrt5,sqrt("xy"),(3"yz")/8,4.5"y"-3"x",`
8 −5, 8 − 5x, 8x −5y × p and 3y2z ÷ 4x
Multiply: (3x - 5y + 2)(5x - 4y - 3)
Divide: 4a2 - a by - a
Express the following as an algebraic expression:
The product of 12, x, y and z minus the product of 5, m and n.
Sonu and Raj have to collect different kinds of leaves for science project. They go to a park where Sonu collects 12 leaves and Raj collects x leaves. After some time Sonu loses 3 leaves and Raj collects 2x leaves. Write an algebraic expression to find the total number of leaves collected by both of them.