Advertisements
Advertisements
प्रश्न
Simplify : \[\frac{1 . 2 \times 1 . 2 \times 1 . 2 - 0 . 2 \times 0 . 2 \times 0 . 2}{1 . 2 \times 1 . 2 + 1 . 2 \times 0 . 2 + 0 . 2 \times 0 . 2}\]
उत्तर
The given expression is
\[\frac{1 . 2 \times 1 . 2 \times 1 . 2 - 0 . 2 \times 0 . 2 \times 0 . 2}{1 . 2 \times 1 . 2 + 1 . 2 \times 0 . 2 + 0 . 2 \times 0 . 2}\]
Assume a =1.2and . b= 0.2 Then the given expression can be rewritten as
`(a^3 - b^3)/(a^2 +ab +b^2)`
Recall the formula for difference of two cubes
`a^3 - b^3 = (a-b)(a^2 +ab +b^2)`
Using the above formula, the expression becomes
`(a^3 - b^3)/(a^2 +ab +b^2) = ((a-b)(a^2 +ab+b^2))/(a^2 +ab+b^2)`
Note that both a , b is positive and unequal. So, neither `a^3 - b^3`nor any factor of it can be zero.
Therefore we can cancel the term `(a^2 + ab + b^2)`from both numerator and denominator. Then the expression becomes
`((a-b)(a^2 +ab+b^2))/(a^2 + ab +b^2) = a-b`
` = 1.2 - 0.2`
` = 1`
APPEARS IN
संबंधित प्रश्न
Get the algebraic expression in the following case using variables, constants and arithmetic operations.
One-half of the sum of numbers x and y.
Factorize : x2 + y - xy - x
Factorize the following expressions:
10x4y – 10xy4
Factorize 8a3 + 27b3 + 36a2b + 54ab2
If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2
Separate the constants and variables from the following :
`-7,7+"x",7"x"+"yz",sqrt5,sqrt("xy"),(3"yz")/8,4.5"y"-3"x",`
8 −5, 8 − 5x, 8x −5y × p and 3y2z ÷ 4x
Multiply: (2x + 3y)(2x - 3y)
Multiply: (6x - 2y)(3x - y)
Divide: 25x2y by - 5y2
Divide: p2 + 4p + 4 by p + 2