English

Simplify : 1 . 2 × 1 . 2 × 1 . 2 − 0 . 2 × 0 . 2 × 0 . 2 1 . 2 × 1 . 2 + 1 . 2 × 0 . 2 + 0 . 2 × 0 . 2 - Mathematics

Advertisements
Advertisements

Question

Simplify :  \[\frac{1 . 2 \times 1 . 2 \times 1 . 2 - 0 . 2 \times 0 . 2 \times 0 . 2}{1 . 2 \times 1 . 2 + 1 . 2 \times 0 . 2 + 0 . 2 \times 0 . 2}\]

Answer in Brief

Solution

The given expression is

 \[\frac{1 . 2 \times 1 . 2 \times 1 . 2 - 0 . 2 \times 0 . 2 \times 0 . 2}{1 . 2 \times 1 . 2 + 1 . 2 \times 0 . 2 + 0 . 2 \times 0 . 2}\]

Assume  a =1.2and . b= 0.2 Then the given expression can be rewritten as

 `(a^3  - b^3)/(a^2 +ab +b^2)`

Recall the formula for difference of two cubes

   `a^3 - b^3 = (a-b)(a^2 +ab +b^2)`

Using the above formula, the expression becomes

  `(a^3  - b^3)/(a^2 +ab +b^2) = ((a-b)(a^2 +ab+b^2))/(a^2 +ab+b^2)`

Note that both a b is positive and unequal. So, neither `a^3 - b^3`nor any factor of it can be zero.

Therefore we can cancel the term `(a^2 + ab + b^2)`from both numerator and denominator. Then the expression becomes

`((a-b)(a^2 +ab+b^2))/(a^2 + ab +b^2) = a-b`

                                        ` = 1.2 - 0.2`

                                        ` = 1`

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Factorisation of Algebraic Expressions - Exercise 5.2 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 5 Factorisation of Algebraic Expressions
Exercise 5.2 | Q 16.3 | Page 14
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×