Advertisements
Advertisements
प्रश्न
Simplify : \[\frac{1 . 2 \times 1 . 2 \times 1 . 2 - 0 . 2 \times 0 . 2 \times 0 . 2}{1 . 2 \times 1 . 2 + 1 . 2 \times 0 . 2 + 0 . 2 \times 0 . 2}\]
उत्तर
The given expression is
\[\frac{1 . 2 \times 1 . 2 \times 1 . 2 - 0 . 2 \times 0 . 2 \times 0 . 2}{1 . 2 \times 1 . 2 + 1 . 2 \times 0 . 2 + 0 . 2 \times 0 . 2}\]
Assume a =1.2and . b= 0.2 Then the given expression can be rewritten as
`(a^3 - b^3)/(a^2 +ab +b^2)`
Recall the formula for difference of two cubes
`a^3 - b^3 = (a-b)(a^2 +ab +b^2)`
Using the above formula, the expression becomes
`(a^3 - b^3)/(a^2 +ab +b^2) = ((a-b)(a^2 +ab+b^2))/(a^2 +ab+b^2)`
Note that both a , b is positive and unequal. So, neither `a^3 - b^3`nor any factor of it can be zero.
Therefore we can cancel the term `(a^2 + ab + b^2)`from both numerator and denominator. Then the expression becomes
`((a-b)(a^2 +ab+b^2))/(a^2 + ab +b^2) = a-b`
` = 1.2 - 0.2`
` = 1`
APPEARS IN
संबंधित प्रश्न
Factorize x (x3 - y3 ) + 3xy ( x - y )
Factorize 8x3 + 27 y3 + 36x2 y + 54xy2
`3sqrt3a^3 - b^3 - 5sqrt5c^3 - 3sqrt15abc`
If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2
Find the value of the following expression: 81x2 + 16y2 − 72xy, when \[x = \frac{2}{3}\] and \[y = \frac{3}{4}\]
Factorize: x4 + x2 + 25.
Multiply: (2x - 3y)(2x + 3y)
Multiply: (3x - 5y + 2)(5x - 4y - 3)
Divide: 2a2 - 11a + 12 by a - 4
Express the following as an algebraic expression:
The sum of x and y minus m.