Advertisements
Advertisements
प्रश्न
If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2
उत्तर
We have:
\[\left( 3x + 5y \right)^2 = \left( 3x \right)^2 + 2\left( 3x \right)\left( 5y \right) + \left( 5y \right)^2 \]
\[ \Rightarrow \left( 3x + 5y \right)^2 = 9 x^2 + 30xy + 25 y^2 \]
\[ \Rightarrow 9 x^2 + 25 y^2 = \left( 3x + 5y \right)^2 - 30xy\]
\[\Rightarrow 9 x^2 + 25 y^2 = {11}^2 - 30 \times 2\] (\[\because\] \[3x + 5y = 11 \text { and } xy = 2\])
\[\Rightarrow 9 x^2 + 25 y^2 = 121 - 60\]
\[ \Rightarrow 9 x^2 + 25 y^2 = 61\]
APPEARS IN
संबंधित प्रश्न
Factorize the following expressions:
`x^3/216 - 8y^3`
Factorize the following expressions:
( x + 2)3 + ( x - 2)3
Factorize the following expressions:
a3 + b3 + a + b
Factorize 8a3 + 27b3 + 36a2b + 54ab2
If \[x^2 + \frac{1}{x^2} = 18,\] find the values of \[x + \frac{1}{x} \text { and } x - \frac{1}{x} .\]
The factors of 8a3 + b3 − 6ab + 1 are
Multiply: (6x - 2y)(3x - y)
The variable in the expression 16x – 7 is __________
–b – 0 is equal to ______.
The value of 3x2 – 5x + 3 when x = 1 is ______.