हिंदी

Factorize 8a3 + 27b3 + 36a2b + 54ab2 - Mathematics

Advertisements
Advertisements

प्रश्न

Factorize 8a3 + 27b3 + 36a2b + 54ab2

संक्षेप में उत्तर

उत्तर

The given expression to be factorized is  `8a^3 + 27b^3  + 36a^2 b+ 54ab^2`

This can be written in the form

 `8a^3 + 27b^3 + 36a^2b + 54ab^2 = (2a)^3 + (3b)^3 + 36a^2b + 54ab^2`

Take common 18ab from the last two terms,. Then we get 

`8a^3 + 27b^3 + 36a^2 b+ 54ab^2 = (2a)^3 +(3b)^3+ 18ab(2a + 3b)`

This can be written in the following form

`8a^3 + 27b^3 + 36a^2 b+ 54ab^2 = (2a)^3 +(3b)^3+ 3.2a.3b(2a + 3b)`

Recall the formula for the cube of the sum of two numbers `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`

Using the above formula, we have  `8a^3 + 27b^3 + 36a^2b+ 54ab^2 = (2a +3b)^3`

We cannot further factorize the expression. 

So, the required factorization is of `8a^3 + 27b^3 + 36a^2b+ 54ab^2 " is "(2a +3b)^3` .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Factorisation of Algebraic Expressions - Exercise 5.3 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 5 Factorisation of Algebraic Expressions
Exercise 5.3 | Q 8 | पृष्ठ १७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×