Advertisements
Advertisements
प्रश्न
Factorize 8a3 + 27b3 + 36a2b + 54ab2
उत्तर
The given expression to be factorized is `8a^3 + 27b^3 + 36a^2 b+ 54ab^2`
This can be written in the form
`8a^3 + 27b^3 + 36a^2b + 54ab^2 = (2a)^3 + (3b)^3 + 36a^2b + 54ab^2`
Take common 18ab from the last two terms,. Then we get
`8a^3 + 27b^3 + 36a^2 b+ 54ab^2 = (2a)^3 +(3b)^3+ 18ab(2a + 3b)`
This can be written in the following form
`8a^3 + 27b^3 + 36a^2 b+ 54ab^2 = (2a)^3 +(3b)^3+ 3.2a.3b(2a + 3b)`
Recall the formula for the cube of the sum of two numbers `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
Using the above formula, we have `8a^3 + 27b^3 + 36a^2b+ 54ab^2 = (2a +3b)^3`
We cannot further factorize the expression.
So, the required factorization is of `8a^3 + 27b^3 + 36a^2b+ 54ab^2 " is "(2a +3b)^3` .
APPEARS IN
संबंधित प्रश्न
Factorize (x + 2)(x2 + 25) -10x2 - 20x
Factorize `x^2 + 12/35 x + 1/35`
Simplify `(155 xx 155 xx 155 - 55 xx 55 xx 55)/(155 xx 155 + 155 xx 55 + 55 xx 55)`
If x2 + y2 = 29 and xy = 2, find the value of x4 + y4 .
If x3 − 3x2 + 3x − 7 = (x + 1) (ax2 + bx + c), then a + b + c =
Evaluate: (6p2 - 8pq + 2q2) (- 5p)
Divide: 4a2 - a by - a
Divide: m2 − 2mn + n2 by m − n
Divide: 35a3 + 3a2b - 2ab2 by 5a - b
Shiv works in a mall and gets paid ₹ 50 per hour. Last week he worked for 7 hours and this week he will work for x hours. Write an algebraic expression for the money paid to him for both the weeks.