Advertisements
Advertisements
प्रश्न
Factorize `x^2 + 12/35 x + 1/35`
उत्तर
Splitting the middle term,
`= x^2 + 5/35 x + 7/35 x + 1/35` `[∵ 12/35 = 5/35 + 7/35 and 5/35 xx 7/35 = 1/35]`
`= x^2 + x/7 + x/5 + 1/35`
`= x(x + 1/7)+ 1/5(x + 1/7)`
`= (x + 1/7)(x + 1/5)`
`∴ x^2 + 12/35 x + 1/35 = (x + 1/7)(x + 1/5)`
APPEARS IN
संबंधित प्रश्न
Factorize `x^2 - sqrt3x - 6`
Factorize the following expressions:
p3 + 27
Simplify `(173 xx 173 xx 173 xx 127 xx 127 xx 127)/(173 xx 173 xx 173 xx 127 xx 127 xx 127)`
The factors of x4 + x2 + 25 are
Separate monomials, binomials, trinomials and polynomials from the following algebraic expressions :
8 − 3x, xy2, 3y2 − 5y + 8, 9x − 3x2 + 15x3 − 7,
3x × 5y, 3x ÷ 5y, 2y ÷ 7 + 3x − 7 and 4 − ax2 + bx + y
Multiply: (2x - 3y)(2x + 3y)
Divide: 25x2y by - 5y2
Divide: 10x3y - 9xy2 - 4x2y2 by xy
The simplest form of 5 ÷ `(3/2) - 1/3` is ______.
If x = 2 and y = 3, then find the value of the following expressions
x + y