Advertisements
Advertisements
प्रश्न
Simplify `(173 xx 173 xx 173 xx 127 xx 127 xx 127)/(173 xx 173 xx 173 xx 127 xx 127 xx 127)`
उत्तर
`(173 xx 173 xx 173 xx 127 xx 127 xx 127)/(173 xx 173 xx 173 xx 127 xx 127 xx 127)`
`= (173^2 + 127^3)/(173^2 - 173 xx 127 + 127^2)`
`= ((173 + 127)(173^3 - 173 xx 127 + 127^2))/(173^2 - 173 xx 127 + 127^2)` `[∵ a^3 - b^3 = (a - b)(a^2 + ab + b^2)]`
`= (a - 1/a)(a^2 + 1 + 1/a^2) - 2(a - 1/a)`
`= (a - 1/a)(a^2 + 1 + 1/a^2 - 2)`
`= (a - 1/a)(a^2 + 1/a^2 - 1)`
`∴ a^3 - 1/a^3 - 2a + 2/a = (a - 1/a)(a^2 + 1/a^2 - 1)`
APPEARS IN
संबंधित प्रश्न
Factorize x3 - 2x2 y + 3xy2 - 6y3
Factorize 4( x - y)2 -12( x - y)( x + y ) + 9(x + y )2
Factorize the following expressions:
a3 + 3a2b + 3ab2 + b3 - 8
If a + b + c = 9 and ab + bc + ca = 40, find a2 + b2 +c2.
Multiply: (2x + 3y)(2x + 3y)
Multiply: (x - a)(x + 3b)
Divide: 25x2y by - 5y2
Write the variables, constant and terms of the following expression
7p – 4q + 5
An equation is true for all values of its variables.
If Rohit has 5xy toffees and Shantanu has 20yx toffees, then Shantanu has ______ more toffees.