Advertisements
Advertisements
प्रश्न
Factorize `21x^2 - 2x + 1/21`
उत्तर
`= (sqrt21x)^2 - 2 xx sqrt21x xx 1/sqrt21 + (1/sqrt21)^2`
Using idnetity `a^2 - 2ab + b^2 = (a - b)^2`
`= (sqrt21x - 1/sqrt21)^2`
`∴ 21x^2 - 2x + 1/21 = (sqrt21x - 1/sqrt21)^2`
APPEARS IN
संबंधित प्रश्न
Factorize: a (a + b)3 - 3a2b (a + b)
Given possible expressions for the length and breadth of the rectangle having 35y2 + 13y – 12 as its area.
Factorize the following expressions:
a3 + b3 + a + b
Factorize 8a3 – 27b3 – 36a2b + 54ab2
`2sqrt2a^3 + 16sqrt2b^3 + c^3 - 12abc`
Multiply: x2 + 4y2 + 2xy − 3x + 6y + 9 by x − 2y + 3
If a2 + b2 + c2 = 20 and a + b + c = 0, find ab + bc + ca.
The value of \[\frac{(0 . 013 )^3 + (0 . 007 )^3}{(0 . 013 )^2 - 0 . 013 \times 0 . 007 + (0 . 007 )^2}\] is
Express the following as an algebraic expression:
Sum of p and 2r – s minus sum of a and 3n + 4x.
Complete the table.
× | 2x2 | −2xy | x4y3 | 2xyz | (___)xz2 |
x4 | |||||
(___) | 4x5y4 | ||||
−x2y | |||||
2y2z | −10xy2z3 | ||||
−3xyz | |||||
(___) | −14xyz2 |