Advertisements
Advertisements
प्रश्न
If a2 + b2 + c2 = 20 and a + b + c = 0, find ab + bc + ca.
उत्तर
Recall the formula
`(a+b+c)^2 = a^+b^2 +c^2 +2(ab +bc +ca)`
Given that
`a^2 +b^2 +c^2 = 20`
`(a+b+c) = 0`
Then we have
`(a+b+c)^2 = a^2 +b^2 +c^2 +2 (ab +bc + ca)`
`(0)^2 = 20 +2(ab +bc + ca)`
` 20+2(ab +bc + ca) = 0`
`2(ab + bc + ca) = -20`
`(ab +bc + ca) = -10`
APPEARS IN
संबंधित प्रश्न
Factorize a2 + 4b2 - 4ab - 4c2
Factorize `7(x - 2y)^2 - 25(x - 2y) + 12`
Factorize the following expressions:
8a3 - b3 - 4ax + 2bx
If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2
If x2 + y2 = 29 and xy = 2, find the value of x + y.
Write the value of 483 − 303 − 183.
The expression (a − b)3 + (b − c)3 + (c −a)3 can be factorized as
Evaluate: (3x - 1)(4x3 - 2x2 + 6x - 3)
Multiply: (x - a)(x + 3b)
Divide: 9a4b - 15a3b2 + 12a2b3 by - 3a2b