Advertisements
Advertisements
प्रश्न
The expression (a − b)3 + (b − c)3 + (c −a)3 can be factorized as
पर्याय
(a − b) (b − c) (c −a)
3(a − b) (b − c) (c −a)
−3(a − b) (b −c) (c − a)
(a + b + c) (a2 + b2 + c2 − ab − bc − ca)
उत्तर
The given expression is
(a − b)3 + (b − c)3 + (c −a)3
Let x= (a-b), y = (b-c)and z = (c- a). Then the given expression becomes
(a − b)3 + (b − c)3 + (c −a)3 ,` = x^3 + y^3 + z^3`
Note that:
`x+ y+ z = (a-b) + (b-c)+ (c-a)`
` = a-b + b -c + c - a`
` =0`
Recall the formula
`a^3 +b^3 + c^3 - 3abc = (a+ b+c) (a^2 +b^2 +c^2 - ab - bc - ca)`
When a + b + c =0, this becomes
`a^3 +b^3 +c^3 -3abc = 0.(a^2 +b^2 + c^2 - ab - bc - ca)`
` = 0`
` a^3 +b^3 + c^3 = 3abc`
So, we have the new formula
` a^3 +b^3 + c^3 = 3abc` , when a+b+c =0.
Using the above formula, the value of the given expression is
` a^3 +b^3 + c^3 = 3abc`
`(a-b)^3 + (b-c)^3 + (c-a)^3 = 3(a-b)(b-c )(c-a)`
APPEARS IN
संबंधित प्रश्न
Factorize: x3 + x - 3x2 - 3
Factorize `2a^2 + 2 sqrt6ab + 3b^2`
Factorize: a2 + b2 + 2 (ab + bc + ca)
125 + 8x3 - 27 y3 + 90xy
(2x - 3y)3 + (4z - 2x)3 + (3y - 4z )3
Find the value of the following expression: 16x2 + 24x + 9, when \[x = \frac{7}{4}\]
The value of \[\frac{(0 . 013 )^3 + (0 . 007 )^3}{(0 . 013 )^2 - 0 . 013 \times 0 . 007 + (0 . 007 )^2}\] is
Evaluate: (c + 5)(c - 3)
Divide: x3 − 6x2 + 11x − 6 by x2 − 4x + 3
Express the following as an algebraic expression:
The subtraction of 5m from 3n and then adding 9p to it.