Advertisements
Advertisements
प्रश्न
Find the value of the following expression: 16x2 + 24x + 9, when \[x = \frac{7}{4}\]
उत्तर
Let us consider the following expression: \[16 x^2 + 24x + 9\]
Now \[16 x^2 + 24x + 9 = \left( 4x + 3 \right)^2\] (Using identity \[\left( a + b \right)^2 = a^2 + 2ab + b^2\])
\[\Rightarrow 16 x^2 + 24x + 9 = \left( 4 \times \frac{7}{4} + 3 \right)^2 (\text { Substituting } x = \frac{7}{4})\]
\[ \Rightarrow 16 x^2 + 24x + 9 = \left( 7 + 3 \right)^2 \]
\[ \Rightarrow 16 x^2 + 24x + 9 = {10}^2 \]
\[ \Rightarrow 16 x^2 + 24x + 9 = 100\]
APPEARS IN
संबंधित प्रश्न
Factorize: a (a + b)3 - 3a2b (a + b)
Factorize x3 - 2x2 y + 3xy2 - 6y3
Factorize `2a^2 + 2 sqrt6ab + 3b^2`
Factorize xy9 - yx9
Factorize `x^2 + 2sqrt3x - 24`
Factorize 2( x + y)2 - 9( x + y) - 5
x3 - 8y3 + 27z3 +18xyz
Write the number of the term of the following polynomial.
23 + a x b ÷ 2
Write the coefficient of x2 and x in the following polynomials
πx2 – x + 2
The constant term of the expression 2y – 6 is _________