Advertisements
Advertisements
प्रश्न
If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2
उत्तर
We have:
\[\left( 3x + 5y \right)^2 = \left( 3x \right)^2 + 2\left( 3x \right)\left( 5y \right) + \left( 5y \right)^2 \]
\[ \Rightarrow \left( 3x + 5y \right)^2 = 9 x^2 + 30xy + 25 y^2 \]
\[ \Rightarrow 9 x^2 + 25 y^2 = \left( 3x + 5y \right)^2 - 30xy\]
\[\Rightarrow 9 x^2 + 25 y^2 = {11}^2 - 30 \times 2\] (\[\because\] \[3x + 5y = 11 \text { and } xy = 2\])
\[\Rightarrow 9 x^2 + 25 y^2 = 121 - 60\]
\[ \Rightarrow 9 x^2 + 25 y^2 = 61\]
APPEARS IN
संबंधित प्रश्न
Factorize x (x3 - y3 ) + 3xy ( x - y )
Factorize : x2 + y - xy - x
Factorize the following expressions:
a3 + b3 + a + b
Write the value of 253 − 753 + 503.
Mark the correct alternative in each of the following: The factors of a2 − 1 − 2x − x2 are
The factors of x3 − 7x + 6 are
Multiply: (2x + 3y)(2x + 3y)
Divide: 4x3 - 2x2 by - x
Divide: x2 + 4xy + 4y2 by x + 2y
When y = –1, the value of the expression 2y – 1 is 3